Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3452, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658543

RESUMEN

Mutations in chromatin regulators are widespread in cancer. Among them, the histone H3 lysine 27 methyltransferase Polycomb Repressive Complex 2 (PRC2) shows distinct alterations according to tumor type. This specificity is poorly understood. Here, we model several PRC2 alterations in one isogenic system to reveal their comparative effects. Focusing then on lymphoma-associated EZH2 mutations, we show that Ezh2Y641F induces aberrant H3K27 methylation patterns even without wild-type Ezh2, which are alleviated by partial PRC2 inhibition. Remarkably, Ezh2Y641F rewires the response to PRC2 inhibition, leading to induction of antigen presentation genes. Using a unique longitudinal follicular lymphoma cohort, we further link EZH2 status to abnormal H3K27 methylation. We also uncover unexpected variability in the mutational landscape of successive biopsies, pointing to frequent co-existence of different clones and cautioning against stratifying patients based on single sampling. Our results clarify how oncogenic PRC2 mutations disrupt chromatin and transcription, and the therapeutic vulnerabilities this creates.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Linfoma Folicular , Mutación , Complejo Represivo Polycomb 2 , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/metabolismo , Histonas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Metilación , Cromatina/metabolismo , Cromatina/genética , Transcripción Genética
2.
Nucleic Acids Res ; 2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38142462

RESUMEN

BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.

3.
J Med Genet ; 61(1): 78-83, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37541786

RESUMEN

About half of the human genome is composed of repeated sequences derived from mobile elements, mainly retrotransposons, generally without pathogenic effect. Familial forms of retinoblastoma are caused by germline pathogenic variants in RB1 gene. Here, we describe a family with retinoblastoma affecting a father and his son. No pathogenic variant was identified after DNA analysis of RB1 gene coding sequence and exon-intron junctions. However, RB1 mRNA analysis showed a chimeric transcript with insertion of 114 nucleotides from HPF1 gene inside RB1 gene. This chimeric transcript led to an insertion of 38 amino acids in functional domain of retinoblastoma protein. Subsequent DNA analysis in RB1 intron 17 revealed the presence of a full-length HPF1 retrogene insertion in opposite orientation. Functional assay shows that this insertion has a deleterious impact on retinoblastoma protein function. This is the first report of a full-length retrogene insertion involved in human Mendelian disease leading to a chimeric transcript and a non-functional chimeric protein. Some retrogene insertions may be missed by standard diagnostic genetic testing, so contribution of retrogene insertions to human disease may be underestimated. The increasing use of whole genome sequencing in diagnostic settings will help to get a more comprehensive view of retrogenes.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/diagnóstico , Retinoblastoma/patología , Proteína de Retinoblastoma/genética , Genes de Retinoblastoma , Susceptibilidad a Enfermedades , Neoplasias de la Retina/diagnóstico , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , ADN , Análisis Mutacional de ADN , Ubiquitina-Proteína Ligasas/genética , Proteínas de Unión a Retinoblastoma/genética , Proteínas Portadoras/genética , Proteínas Nucleares/genética
4.
Cancer Gene Ther ; 30(8): 1144-1155, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37248434

RESUMEN

The tumor suppressor gene WWOX is localized in an unstable chromosomal region and its expression is decreased or absent in several types of cancer. A low expression of WWOX is associated with a poor prognosis in breast cancer (BC). It has recently been shown that WWOX contributes to genome stability through its role in the DNA damage response (DDR). In breast cancer cells, WWOX inhibits homologous recombination (HR), and thus promotes the repair of DNA double-stranded breaks (DSBs) by non-homologous end joining (NHEJ). The fine-tuning modulation of HR activity is crucial. Its under or overstimulation inducing genome alterations that can induce cancer. MERIT40 is a positive regulator of the DDR. This protein is indispensable for the function of the multi-protein complex BRCA1-A, which suppresses excessive HR activity. MERIT40 also recruits Tankyrase, a positive regulator of HR, to the DSBs to stimulate DNA repair. Here, we identified MERIT40 as a new molecular partner of WWOX. We demonstrated that WWOX inhibited excessive HR activity induced by overexpression of MERIT40. We showed that WWOX impaired the MERIT40-Tankyrase interaction preventing the role of the complex on DSBs. Furthermore, we found that MERIT40 is overexpressed in BC and that this overexpression is associated to a poor prognosis. These results strongly suggest that WWOX, through its interaction with MERIT40, prevents the deleterious impact of excessive HR on BC development by inhibiting MERIT40-Tankyrase association. This inhibitory effect of WWOX would oppose MERIT40-dependent BC development.


Asunto(s)
Neoplasias de la Mama , Recombinación Homóloga , Femenino , Humanos , Neoplasias de la Mama/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Tanquirasas/genética , Tanquirasas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW/genética , Oxidorreductasa que Contiene Dominios WW/metabolismo
5.
Ther Adv Med Oncol ; 15: 17588359221146132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36700131

RESUMEN

By 2030, pancreatic cancer will become the second leading cause of cancer-related deaths in the United States and in Europe. The management of patients with advanced pancreatic cancer relies on chemotherapy and poly (ADP-ribose) polymerase inhibitors for patients who carry BRCA1/2 inactivating alterations. Some variants, such as large insertion/deletions (Indels), inactivating BRCA1/2 and therefore of clinical relevance can be hard to detect by next-generation sequencing techniques. Here we report a 47-year-old patient presenting with pancreatic cancer whose tumour harbours a large somatic intra-exonic deletion of BRCA2 of 141 bp. This BRCA2 deletion, located in the C-terminal domain, can be considered as pathogenic and consequently affect tumorigenesis because it is involved in the interaction between the DSS1 protein and DNA. Thanks to the optimized bioinformatics algorithm, this intermediate size deletion in BRCA2 was identified, enabling personalized patient management via the inclusion of the patients in a clinical trial.

7.
NPJ Breast Cancer ; 8(1): 9, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039532

RESUMEN

At least 10% of the BRCA1/2 tests identify variants of uncertain significance (VUS) while the distinction between pathogenic variants (PV) and benign variants (BV) remains particularly challenging. As a typical tumor suppressor gene, the inactivation of the second wild-type (WT) BRCA1 allele is expected to trigger cancer initiation. Loss of heterozygosity (LOH) of the WT allele is the most frequent mechanism for the BRCA1 biallelic inactivation. To evaluate if LOH can be an effective predictor of BRCA1 variant pathogenicity, we carried out LOH analysis on DNA extracted from 90 breast and seven ovary tumors diagnosed in 27 benign and 55 pathogenic variant carriers. Further analyses were conducted in tumors with PVs yet without loss of the WT allele: BRCA1 promoter hypermethylation, next-generation sequencing (NGS) of BRCA1/2, and BRCAness score. Ninety-seven tumor samples were analyzed from 26 different BRCA1 variants. A relatively stable pattern of LOH (65.4%) of WT allele for PV tumors was observed, while the allelic balance (63%) or loss of variant allele (15%) was generally seen for carriers of BV. LOH data is a useful complementary argument for BRCA1 variant classification.

8.
Biomolecules ; 11(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34356684

RESUMEN

The maintenance of genome integrity in the cell is an essential process for the accurate transmission of the genetic material. BRCA2 participates in this process at several levels, including DNA repair by homologous recombination, protection of stalled replication forks, and cell division. These activities are regulated and coordinated via cell-cycle dependent modifications. Pathogenic variants in BRCA2 cause genome instability and are associated with breast and/or ovarian cancers. BRCA2 is a very large protein of 3418 amino acids. Most well-characterized variants causing a strong predisposition to cancer are mutated in the C-terminal 700 residues DNA binding domain of BRCA2. The rest of the BRCA2 protein is predicted to be disordered. Interactions involving intrinsically disordered regions (IDRs) remain difficult to identify both using bioinformatics tools and performing experimental assays. However, the lack of well-structured binding sites provides unique functional opportunities for BRCA2 to bind to a large set of partners in a tightly regulated manner. We here summarize the predictive and experimental arguments that support the presence of disorder in BRCA2. We describe how BRCA2 IDRs mediate self-assembly and binding to partners during DNA double-strand break repair, mitosis, and meiosis. We highlight how phosphorylation by DNA repair and cell-cycle kinases regulate these interactions. We finally discuss the impact of cancer-associated variants on the function of BRCA2 IDRs and more generally on genome stability and cancer risk.


Asunto(s)
Proteína BRCA2/química , Proteína BRCA2/metabolismo , Reparación del ADN/fisiología , Proteína BRCA2/genética , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Femenino , Humanos , Interfase/fisiología , Espectroscopía de Resonancia Magnética , Mitosis , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
9.
Nucleic Acids Res ; 49(7): 3841-3855, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33744941

RESUMEN

Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.


Asunto(s)
Proteínas de Unión al ADN , ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína
10.
Int J Mol Sci ; 21(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481735

RESUMEN

Ovarian and breast cancers are currently defined by the main pathways involved in the tumorigenesis. The majority are carcinomas, originating from epithelial cells that are in constant division and subjected to cyclical variations of the estrogen stimulus during the female hormonal cycle, therefore being vulnerable to DNA damage. A portion of breast and ovarian carcinomas arises in the context of DNA repair defects, in which genetic instability is the backdrop for cancer initiation and progression. For these tumors, DNA repair deficiency is now increasingly recognized as a target for therapeutics. In hereditary breast/ovarian cancers (HBOC), tumors with BRCA1/2 mutations present an impairment of DNA repair by homologous recombination (HR). For many years, BRCA1/2 mutations were only screened on germline DNA, but now they are also searched at the tumor level to personalize treatment. The reason of the inactivation of this pathway remains uncertain for most cases, even in the presence of a HR-deficient signature. Evidence indicates that identifying the mechanism of HR inactivation should improve both genetic counseling and therapeutic response, since they can be useful as new biomarkers of response.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Neoplasias Ováricas/genética , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Femenino , Genes BRCA1 , Genes BRCA2 , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Mutación
11.
Sci Rep ; 10(1): 6920, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332845

RESUMEN

To better define the role of FOXO1 and FOXO3 transcriptional factors in breast carcinogenesis, we performed a comparative study of their expression at both the RNA and protein levels in a series of human breast tumors. We used qRT-PCR assay to quantify mRNA expression and Reverse Phase Protein Arrays (RPPA) to quantify protein expression in 218 breast tumors from patients with known clinical/pathological status and outcome. Weak correlations were observed between mRNA and protein expressions for both FOXO1 and FOXO3 genes. High expression of FOXO3 protein, but not FOXO1 protein, was a good prognostic marker, negatively correlated with KI67 and markers of activity of the PI3K/AKT/mTOR oncogenic pathway, and positively correlated with p53, a marker of apoptosis. Moreover, FOXO3 protein expression, but not FOXO1 protein expression, was also negatively correlated with various proteins involved in different DNA repair mechanisms. FOXO3 protein, but not FOXO1 protein, appears to be a tumor suppressor that inhibits breast cancer by altering DNA damage response (DDR), thereby inducing p53-dependent apoptosis. This antitumor effect appears to be suppressed by excessive activity of the PI3K/AKT/mTOR pathway. High FOXO3 protein expression could be a biomarker of deficient DDR in breast tumors.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ciclo Celular/genética , Proliferación Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
12.
Cells ; 8(6)2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185657

RESUMEN

Emerin is a nuclear envelope protein that contributes to genome organization and cell mechanics. Through its N-terminal LAP2-emerin-MAN1 (LEM)-domain, emerin interacts with the DNA-binding protein barrier-to-autointegration (BAF). Emerin also binds to members of the linker of the nucleoskeleton and cytoskeleton (LINC) complex. Mutations in the gene encoding emerin are responsible for the majority of cases of X-linked Emery-Dreifuss muscular dystrophy (X-EDMD). Most of these mutations lead to an absence of emerin. A few missense and short deletion mutations in the disordered region of emerin are also associated with X-EDMD. More recently, missense and short deletion mutations P22L, ∆K37 and T43I were discovered in emerin LEM-domain, associated with isolated atrial cardiac defects (ACD). Here we reveal which defects, at both the molecular and cellular levels, are elicited by these LEM-domain mutations. Whereas K37 mutation impaired the correct folding of the LEM-domain, P22L and T43I had no impact on the 3D structure of emerin. Surprisingly, all three mutants bound to BAF, albeit with a weaker affinity in the case of K37. In human myofibroblasts derived from a patient's fibroblasts, emerin ∆K37 was correctly localized at the inner nuclear membrane, but was present at a significantly lower level, indicating that this mutant is abnormally degraded. Moreover, SUN2 was reduced, and these cells were defective in producing actin stress fibers when grown on a stiff substrate and after cyclic stretches. Altogether, our data suggest that the main effect of mutation K37 is to perturb emerin function within the LINC complex in response to mechanical stress.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Estrés Mecánico , Línea Celular , Citoesqueleto , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lamina Tipo A/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patología , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Dominios Proteicos/genética , Estructura Terciaria de Proteína
13.
Mol Cancer Res ; 17(1): 54-69, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30257991

RESUMEN

BRCA1 mutations have been identified that increase the risk of developing hereditary breast and ovarian cancers. Genetic screening is now offered to patients with a family history of cancer, to adapt their treatment and the management of their relatives. However, a large number of BRCA1 variants of uncertain significance (VUS) are detected. To better understand the significance of these variants, a high-throughput structural and functional analysis was performed on a large set of BRCA1 VUS. Information on both cellular localization and homology-directed DNA repair (HR) capacity was obtained for 78 BRCT missense variants in the UMD-BRCA1 database and measurement of the structural stability and phosphopeptide-binding capacities was performed for 42 mutated BRCT domains. This extensive and systematic analysis revealed that most characterized causal variants affect BRCT-domain solubility in bacteria and all impair BRCA1 HR activity in cells. Furthermore, binding to a set of 5 different phosphopeptides was tested: all causal variants showed phosphopeptide-binding defects and no neutral variant showed such defects. A classification is presented on the basis of mutated BRCT domain solubility, phosphopeptide-binding properties, and VUS HR capacity. These data suggest that HR-defective variants, which present, in addition, BRCT domains either insoluble in bacteria or defective for phosphopeptide binding, lead to an increased cancer risk. Furthermore, the data suggest that variants with a WT HR activity and whose BRCT domains bind with a WT affinity to the 5 phosphopeptides are neutral. The case of variants with WT HR activity and defective phosphopeptide binding should be further characterized, as this last functional defect might be sufficient per se to lead to tumorigenesis. IMPLICATIONS: The analysis of the current study on BRCA1 structural and functional defects on cancer risk and classification presented may improve clinical interpretation and therapeutic selection.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosfopéptidos/genética , Fosfopéptidos/metabolismo , Animales , Neoplasias de la Mama/patología , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Recombinación Homóloga , Humanos , Ratones , Modelos Moleculares , Mutación Missense , Factores de Riesgo
14.
BMC Biol ; 16(1): 109, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30285739

RESUMEN

BACKGROUND: The WW domain-containing oxidoreductase (WWOX) gene, frequently altered in breast cancer, encodes a tumor suppressor whose function is mediated through its interactions with cancer-related proteins, such as the pro-apoptotic protein p73α. RESULTS: To better understand the involvement of WWOX in breast tumorigenesis, we performed a yeast two-hybrid screen and co-immunoprecipitation assays to identify novel partners of this protein. We characterized the vesicular overexpressed in cancer pro-survival protein 1 (VOPP1) as a new regulator of WWOX. In breast cancer cells, VOPP1 sequestrates WWOX in lysosomes, impairs its ability to associate with p73α, and inhibits WWOX-dependent apoptosis. Overexpressed VOPP1 potentiates cellular transformation and enhances the growth of transplanted tumors in vivo. VOPP1 is overexpressed in breast tumors, especially in tumors that retain WWOX. Moreover, increased expression of VOPP1 is associated with reduced survival of patients with WWOX-positive, but not with WWOX-negative, tumors. CONCLUSIONS: These findings emphasize the importance of the sequestration of WWOX by VOPP1 in addition to WWOX loss in breast tumors and define VOPP1 as a novel oncogene promoting breast carcinogenesis by inhibiting the anti-tumoral effect of WWOX.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Oxidorreductasa que Contiene Dominios WW/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW/metabolismo
15.
Nucleic Acids Res ; 46(19): 10460-10473, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30137533

RESUMEN

Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF's ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.


Asunto(s)
Proteínas de Unión al ADN/química , Lamina Tipo A/química , Proteínas de la Membrana/química , Proteínas Nucleares/química , Progeria/metabolismo , Dominios Proteicos , Cristalografía por Rayos X , Proteínas de Unión al ADN/metabolismo , Genes Recesivos , Humanos , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutación , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progeria/genética , Unión Proteica , Multimerización de Proteína
16.
Oncotarget ; 9(25): 17334-17348, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29707112

RESUMEN

Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.

17.
Biomol NMR Assign ; 12(2): 225-229, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29582385

RESUMEN

Lamins are the main components of the nucleoskeleton. They form a protein meshwork that underlies the inner nuclear membrane. Mutations in the LMNA gene coding for A-type lamins (lamins A and C) cause a large panel of human diseases, referred to as laminopathies. These diseases include muscular dystrophies, lipodystrophies and premature aging diseases. Lamin A exhibits a C-terminal region that is different from lamin C and is post-translationally modified. It is produced as prelamin A and it is then farnesylated, cleaved, carboxymethylated and cleaved again in order to become mature lamin A. In patients with the severe Hutchinson-Gilford progeria syndrome, a specific single point mutation in LMNA leads to an aberrant splicing of the LMNA gene preventing the post-translational processing of prelamin A. This leads to the accumulation of a permanently farnesylated lamin A mutant lacking 50 amino acids named progerin. We here report the NMR 1H, 15N, 13CO, 13Cα and 13Cß chemical shift assignment of the C-terminal region that is specific to prelamin A, from amino acid 567 to amino acid 664. We also report the NMR 1H, 15N, 13CO, 13Cα and 13Cß chemical shift assignment of the C-terminal region of the progerin variant, from amino acid 567 to amino acid 614. Analysis of these chemical shift data confirms that both prelamin A and progerin C-terminal domains are largely disordered and identifies a common partially populated α-helix from amino acid 576 to amino acid 585. This helix is well conserved from fishes to mammals.


Asunto(s)
Lamina Tipo A/química , Lamina Tipo A/metabolismo , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Humanos , Unión Proteica
18.
Oncotarget ; 9(7): 7464-7475, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29484124

RESUMEN

In mammals, FOXO transcriptional factors form a family of four members (FOXO1, 3, 4, and 6) involved in the modulation proliferation, apoptosis, and carcinogenesis. The role of the FOXO family in breast cancer remains poorly elucidated. According to the cellular context and the stage of the disease, FOXOs can have opposite effects on carcinogenesis. To study the role of FOXOs in breast carcinogenesis in more detail, we examined their expression in normal tissues, breast cell lines, and a large series of breast tumours of human origin. We found a very low physiological level of FOXO6 expression in normal adult tissues and high levels of expression in foetal brain. FOXO gene expressions fluctuate specifically in breast cancer cells compared to normal cells, suggesting that these genes may have different roles in breast carcinogenesis. For the first time, we have shown that, among the various FOXO genes, only FOXO6 was frequently highly overexpressed in breast cell lines and tumours. We also found that inhibition of the endogenous expression of FOXO6 by a specific siRNA inhibited the growth of the human breast cell lines MDA-MB-468 and HCC-38. FACS and Western blot analysis showed that inhibition of endogenous expression of FOXO6 induced accumulation of cells in G0/G1 phase of the cell cycle, but not apoptosis. These results tend to demonstrate that the overexpression of the human FOXO6 gene that we highlighted in the breast tumors stimulates breast carcinogenesis by activating breast cancer cell proliferation.

19.
Mol Cancer Res ; 13(5): 902-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25678599

RESUMEN

UNLABELLED: The WW domain containing oxidoreductase (WWOX) has recently been shown to inhibit of the Wnt/ß-catenin pathway by preventing the nuclear import of disheveled 2 (DVL2) in human breast cancer cells. Here, it is revealed that WWOX also interacts with the BCL9-2, a cofactor of the Wnt/ß-catenin pathway, to enhance the activity of the ß-catenin-TCF/LEF (T-cell factor/lymphoid enhancer factors family) transcription factor complexes. By using both a luciferase assay in MCF-7 cells and a Xenopus secondary axis induction assay, it was demonstrated that WWOX inhibits the BCL9-2 function in Wnt/ß-catenin signaling. WWOX does not affect the BCL9-2-ß-catenin association and colocalizes with BCL9-2 and ß-catenin in the nucleus of the MCF-7 cells. Moreover, WWOX inhibits the ß-catenin-TCF1 interaction. Further examination found that HDAC3 associates with BCL9-2, enhances the inhibitory effect of WWOX on BCL9-2 transcriptional activity, and promotes the WWOX-BCL9-2 interaction, independent of its deacetylase activity. However, WWOX does not influence the HDAC3-BCL9-2 interaction. Altogether, these results strongly indicate that nuclear WWOX interacts with BCL9-2 associated with ß-catenin only when BCL9-2 is in complex with HDAC3 and inhibits its transcriptional activity, in part, by inhibiting the ß-catenin-TCF1 interaction. The promotion of the WWOX-BCL9-2 interaction by HDAC3, independent of its deacetylase activity, represents a new mechanism by which this HDAC inhibits transcription. IMPLICATIONS: The inhibition of the transcriptional activity of BCL9-2 by WWOX and HDAC3 constitutes a new molecular mechanism and provides new insight for a broad range of cancers.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Histona Desacetilasas/genética , Oxidorreductasas/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Femenino , Células HEK293 , Histona Desacetilasas/metabolismo , Humanos , Células MCF-7 , Ratones , Oxidorreductasas/metabolismo , Factores de Transcripción/metabolismo , Transfección , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW , Xenopus , beta Catenina/metabolismo
20.
Science ; 336(6082): 724-7, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22499807

RESUMEN

During animal development, several planar cell polarity (PCP) pathways control tissue shape by coordinating collective cell behavior. Here, we characterize by means of multiscale imaging epithelium morphogenesis in the Drosophila dorsal thorax and show how the Fat/Dachsous/Four-jointed PCP pathway controls morphogenesis. We found that the proto-cadherin Dachsous is polarized within a domain of its tissue-wide expression gradient. Furthermore, Dachsous polarizes the myosin Dachs, which in turn promotes anisotropy of junction tension. By combining physical modeling with quantitative image analyses, we determined that this tension anisotropy defines the pattern of local tissue contraction that contributes to shaping the epithelium mainly via oriented cell rearrangements. Our results establish how tissue planar polarization coordinates the local changes of cell mechanical properties to control tissue morphogenesis.


Asunto(s)
Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Glicoproteínas de Membrana/metabolismo , Morfogénesis , Animales , Anisotropía , Cadherinas/genética , Moléculas de Adhesión Celular/genética , Forma de la Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Uniones Intercelulares/metabolismo , Uniones Intercelulares/fisiología , Glicoproteínas de Membrana/genética , Metamorfosis Biológica , Modelos Biológicos , Miosinas/metabolismo , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Tórax/citología , Tórax/crecimiento & desarrollo , Tórax/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...